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Abstract

The significance of the generalized minimal dominating graphical indices is that their specific cases for randomly chosen
values of the non-zero real numbers m and n, which are coincide with the vast majority of pre-defined graphical indices being
considered. In this paper, we obtain some specific families of graphs, bounds and characterization in terms of order, size,
minimum / maximum dominating degree and other dominating degree-based graphical indices. Also, we present the chemical
applicability of molecular graph of some basic Benzenoid structures of above said graphical indices.
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1. Introduction

By a graph G = (V(G),E(G)), we mean a finite, undirected and simple graph. As usual p = |[V(G)|
and q = |[E(G)| denotes the number of vertices and edges of (p, q)-graph G, respectively. Let deg(v) be the
degree of vertex v and as usual (G) = §, the minimum degree, and A(G) = A, the maximum degree of G. A
graph G is r-regular if 8 = A = r. The induced subgraph (X) is the subgraph of G with the vertex set X. The
open neighborhood N(v) of vertex v denotes the set of vertices adjacent to v and its closed neighborhood
N[v] = N(v) U{v}. For graph-theoretical terminology, we refer to [14]. A set D C V(G) is a dominating
set of G if every vertex in V(G) — D is adjacent to some vertex in D. The domination number y(G) is the
minimum cardinality of a dominating set of G. Further, a dominating set D is a minimal dominating set if
no proper subset of D is a dominating set of G.

Observation 1. If D is a minimal dominating set, then for every vertex v € D, there is a vertex u € N[v]
which is dominated only by v. We will call such a vertex u, a private neighbor of v, since u is not adjacent
to any vertex in D — {v}.

Observation 2. Every minimum dominating set is a minimal dominating set, but the converse is not true in
general, one such example is the graph G = S; 5, where S; 5 is a star with (s 4 1)-vertices.
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For a complete review of the theory of domination and its related parameters, we refer to [5], [16]-[19]
and [23].

In the present research work, the value of each vertex v € V(G), called the dominating degree of v
denoted by yg(v), and is defined along with the number of minimal dominating sets of G which contains
v. The minimum and maximum dominating degree of G are denoted by 84(G) = 84 and Aq(G) = Ag,
respectively. Further, a graph G is rq-minimal dominating regular if 84 = Aq = rq. Also, the total number
of minimal dominating sets of a graph G are denoted by Tmp (G). This concept was initiated by Ahmed et
al., [1]-[4] and studied by Basavangoud et al., [6] and Kante et al., [25].

Observation 3. For any non-trivial simple graph G,

1<vg(v) < Tmp(G).

The use of graphical indices has been extensively studied. For their history, applications, and mathe-
matical properties, see [8]-[13] and the references cited therein.

In this paper, we initiate the novel generalization of minimal dominating graphical indices of a graph G
with two real numbers m and n are as follows:

(i) The (m,n)-sum minimal dominating index of G is

SMD(mm)(G) = D W& +yEWI™
uveE(G)

(ii) The (m,n)-product minimal dominating index of G is

PMD(mm)(G) = ) KEWyETOI™
uvekE(G)

(iii) The (m,n)-difference minimal dominating index of G is

DMD(mm)(G) = >  W&w—vy&MmM™
uveE(G)

2. Specific cases for randomly chosen values of m and n

The majority of hitherto studied dominating degree-based graphical indices are special cases of (m,n)-
minimal dominating graphical indices of a graph G, for particular values of non-zero real numbers m and n
are as shown in below Table 1.

(m, n)-minimal dominating graphical indices | Name of the graphical indices

SMD (4,1)(G) = DM} (G) The modified first Zagreb dominating index, [1]
SMD,,1)(G) = DF*(G) The modified Forgotten dominating index, [3]
SMD 4 ,5)(G) = DH(G) The hyper dominating index, [3]

SMD(; _1)(G) = Dh(G) The dominating Harmonic index, [1]

SMD ;1 (G) = DN(G) The dominating Nirmala index, [20]
SMD;,_1,(G) =™ DN(G) The modified dominating Nirmala index, [20]
SMD (_;,_1)(G) =™ DM3(G) The modified second Zagreb dominating index, [2]
SMD,1,(G) = DSO(G) The Sombor dominating index, [26]

PMD 1)(G) = DM2(G) The second dominating Zagreb index, [1]
PMD(L’%](G) = RDP(G) The Reciprocal dominating product connectivity index, [22]
PMD, _1,(G) = DP(G) The dominating product connectivity index, [22]
DMD, 1,(G) = IDN(G) An irregularity dominating Nirmala index, [21]
DMD, 1, (G) =1IDSO(G) An irregularity dominating Sombor index, [21]
DMD, 9)(G) = Ds(G) The dominating Sigma index, [28]

Table 1: The particular values of (m,n)-minimal dominating graphical indices.
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3. Some specific families of graphs

Here, computed values of some specific families of graphs are presented without proof.

Proposition 3.1. For any complete graph K, with p > 3
(i) SMD(m,n)(Kp) =21 p(p —1).

(ii) PMD () (Kp) = w

(iii) DMD () (Kp) = 0.

Proposition 3.2. For any complete bipatite graph K¢ s with 2 <t <s,
(i) SMD (jnn)(Kes) =ts ((t+1)™+ (s +1)™)™
(ii) PMD () (Kes) =ts ((t+1)(s+1))"

ts|(t+ D)™ —(s+ )™ t<s

(iii) DMD (mn)(Kes) = {0; t=s.

Corollary 3.3. For any star S s with (s 4 1)-vertices for s > 1,
(l) SMD(m,n)(SLS) =2Mng,
(11) PMD(m,n)(SLS) =sMmn,

(iii) DMD (n)(S15) = 0.

Proposition 3.4. For any double star graph S¢ s with t > 2 and s > 3

(i) SMD(m,n)(St,s) =(t+s—1) gn(m+l),
(i) PMD(m,n)(St,s) = (t+s—1)4mm
(iii) DMD (1 n) (St,s) =0.

4. Bounds in terms of order, size, degree domination and total number of minimal dominating set

Theorem 4.1. Let G be a (p, q)-graph with p > 2. Then
(i) 2™ q < SMD () (G) <277 q (p—1)™"

)

(ii) g < PMD(;.n)(G) < q(p—1)2mn.
(iff) 0 < DMD (. )(G) < q((p— 1™ — 1)™.

Proof. Let G be a (p, q)-graph with p > 2. If 1 <{yg(u),yg(v)} <p—1, then
(i) 2<vgwW+yve(v) <2(p—1)

2™ <YW YR W) < 2™ (p—1)™
2™ < YT () +YEWIT < 2™ (p— 1)

Apply summation for each edge e = uv € E(G), we have
Z omn < Z YG ( )]n < Z 2mn(p - 1)mn
uveE(G) uveE(G) uvek(G)

Therefore, 2™™ q < SMD (1, )(G) <2™™ q (p—1)™™.
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(i) 1<yewye) < (p—1)?
1<ye g < (p—1°"
L<yEWyEWIt < (p—1)2mn
Apply summation for each edge e = uv € E(G), we have
So1< Y hEwaBers Y (o
WveE(G) uveE(G) WveE(G)
Therefore, ¢ < PMD (1, n)(G) < q(p — 1)2mn,
(iii) Similarly, we have 0 < DMD (1, n)(G) < q((p—1)™ —1)™ O
Theorem 4.2. Let G be a (p, q)-graph with p > 2. Then
(i) 2"qdT™(G) < SMD (1 n)(G) < 2"qAT™(G)
(i) q83™™(G) < PMD (1y.n)(G) < qAZT™™(G)
(iii) 0 < DMD (1nn)(G) < ql(AT(G) — 87 (G))[™.

The lower and upper bounds holds if and only if G is rg-minimal dominating regular.

Proof. Let G be a (p, q)-graph with p > 2. If $4(G) < {yg(u),vg(v)} < Aq(G), then
(i) 203(G) < vg (W +vg(v) <2AF(G)

208 (G) < y& (W) +vg (I™ < 2"AFT(G).
Apply summation for each edge e = uv € E(G), we have
2"q03™"(G) < SMD (1 1) (G) < 2MqAFT(G).
(ii) §3M(G) < vE (W g (v) <AF™M(G)
53™M(G) < Y& (W) ¥ MI™ < AT™™(G).
Apply summation for each edge e = uv € E(G), we have
5™ (G) < PMD (1) (G) < gAF™(G).
(iii) Similarly, we have 0 < DMD (4, )(G) < q[(ATH(G) — 84)™(G)[™.
The lower and upper bounds holds if and only if G is rq-minimal dominating regular. Ul

Theorem 4.3. Let G be a (p, q)-graph with p > 2. Then

(i) 2™™q < SMD (1) (G) < 2™" q TR (G).
(ii) q < PMD(;y.n)(G) < q TRIBY(G).

Proof. Let G be a (p, q)-graph with p > 2. If 1 <{yg(u),vyc(v)} < Tmp(G), then
(i) 2<yvc(W+vc(v) <2Tmp(G)
2™ <vg (W +vE (v) < 2MTRAp (6)
2™ < yg (w) +yEmO)™ < 2™ TUB (G).

Apply summation for each edge e = uv € E(G), we have

2™ < SMD (1 1) (G) < 2™ g TUDB(G).
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(ii) 1 <ygwaygv) <THH(G)
1< g w)ygmI™ < THBH(G).
Apply summation for each edge e = uv € E(G), we have
Hence, the proof is complete. O
Theorem 4.4. Let G be a (p, q)-graph with p > 2. Then
2n 2m
The lower and upper bounds holds if and only if G is rg-minimal dominating regular.
Proof. Let G be a (p, q)-graph with p > 2 vertices. Then
Vo)™ 476 )™ =y BN YN | L]
© ¢ T hEw R
mn mn 2 " m m n
Yo (W™ Myg(v) — <lvg(w)+vg Wl
AT(G)
2 n
< mn mn .
<Yolu ™o)™ |5
Apply summation for each edge e = uv € E(G), we have
mmn mn 2 " m m n
Y ve™ e | < Y WEW+vEw)
WVEE(G) d uveE(G)
2 n
< mn mn .
< Y vel™vet™ s
uvek(G)
2n 2m
A?n(G)PMD(m,n)(G) < SMD(m,n)(G) < B?R(G)PMD(m,n)(G)'
The lower and upper bounds holds if and only if G is rq-minimal dominating regular. Ul

Theorem 4.5. Let G be a (p, q)-graph with p > 2. Then

1 S
0 < DMD G) < — PMD G).
(€] [631(@) A?(GJ €]

The lower and upper bounds holds if and only if G is rg-minimal dominating regular.

Proof. Let G be a (p, q)-graph with p > 2. Then

m A n__,mn mn 1 - ! i
y&e (w) —vgWIM =vg ™ (uw).vg (")[yg(u) VE‘(VJ '
o<|v8(u)—v8(v)|“<v2‘“(‘*”’3w[ 5 T

STH(G)  ATY(G)
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Apply summation for each edge e = uv € E(G), we have

1 1 "
0< Y WEW—YEMM< Y YEWAE W) | srras — |-
OH(G)  AF(G)
uvek(G) uveE(G)
[ 1 B 1
dTHG) AT

The lower and upper bounds holds if and only if G is rg-minimal dominating regular. O

n
0< DMD(m,n)(G) < G):l PMD(m,n)(G)~

Theorem 4.6. Let G be a (p, q)-graph with p > 2. Then

(i) DF*(G) = DH(G) —2DMx(G).
(ii) Do(G) = DF*(G) —2DMz(G).
(iii) Do(G) = DH(G) —4DMy(G).
Proof. Let G be a (p, q)-graph with p > 2.
(i) Consider  DF*(G)= Y [Ki(u)+vZ(W)
uvek(G)

= Z [yg (W) +vc(V)]* —2yg(w)yg (V)]

uvek(G)
= Y heW+veIPP-2 >  hewycH)
uvek(G) uveE(G)

— DH(G) — 2DMy(G).

(ii) Consider Do(G)= Y |hegw) —vcW)?
uveE(G)

= YG +vc (V) —2va YGlV
[ (LL)2 ( )2 (LL) ( ”
uvek(G)

— DF*(G) — 2DM,(G).

(iii) Consider Do(G)= Y lyg(uw) —veW)P
uvek(G)

= Y (relw+vs™)’ —4vg v
uvek(G)

= DH(G) —4DM,(G).
Hence, the proof is complete. O

To prove our next few results we make use of the following inequalities such as Harmonic mean, Geometric
mean, Arithmatic mean and Quadratic mean (HM-GM-AM-QM) [7] as follows:

2xy x+y _ [x2+y?
S VXY < < . 4.1
x+y b 2 2 (41)

where x and y are non-zero real numbers.

Theorem 4.7. Let G be a (p, q)-graph with p > 2 vertices. Then
(i) 2RDP(G) < SMD;)(G) < v2DSO(G).
(i) 4ISI(G) < SMD(1,1)(G) < V2DSO(G).
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(iii) 2[DM}(G)+DN(G)] < SMD(14)(G) < DF*(G)Dh(G).
Proof. Let G be a (p, q)-graph with p > 2 vertices.
(i) By the definition of SMD (1, n)(G) and equation 4.1, we have

Yo +ys(v) _ VYW Y50
2 h V2 ‘
2V vc(W.ve(v) < ve(w +ve(v) < V2y/vE (W) +v4(v).
Apply summation for each edge e = uv € E(G), we have

2 Y Vyelwye< ) YG(H)+YG(V)

uveE(G) uvek(G

WZ\/

uvek(G

Therefore, 2RDP(G) < SMD 1)(G) < V2DSO(G
(ii) By the definition of SMD (1, 1,)(G) and equation 4.1, we have

VYcu).ygv) <

Yo vel) _ vl +velv) _ \/vé(u)Jrv?G(v)
ve(w) +ve(v) = 2 h 2 '

Ye(u.yg(v)
Ye(u) +vg(v)
Apply summation for each edge e = uv € E(G), we have

u).yg(v)
4MZE —+YG()< ZG)YG w) +v6(v)
< Z \[\/'YG
uvek(G

Therefore, 41SI(G) < SMD 1 1)(G) < \/§DSO(G)
(iii) By the definition of SMD (4 n)(G) and equation 4.1, we have

<vew) +v6(v) < V24 /vE (W) +vL (v).

Yeu)+vcv) Ye(W.ycv) _ vel(u) +vev) vG(u)JerG

<
3 + 3

[ye(w) +vg(v) +vvcu).yac(W)] <vgu) +vg(v)
2 2 2
<R 70 (e )

Apply summation for each edge e = uv € E(G), we have

uvek(G) uveE(G)

N
)
ml\)
£
+
.<
Ol\?
VRS
[\)
N————

uvek(G)

Therefore, 2[DM?(G) + DN(G)] < SMD; 1)(G) < DF*(G)Dh(G).
Hence, the proof is complete.

2 YG(UH-YG(V)'

> Y e +veW+vVyeyeI< ) vew+vev)
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To prove our next result, we make use of the definition of the dominating inverse sum indeg index of a
graph G, and is defined as

DISI(G) = Z YG(U)-YG(V).

uveE(G)YG(U)+YG(V)

Theorem 4.8. Let G be a (p, q)-graph with p > 2. Then

1
2DISI(G) < PMD, 1) < ;DM (G).

I\J

Proof. We know that,

p Yo ¥ )yt <

Ye(uw) +ve(v) 2
Apply summation for each edge e = uv € E(G), we have
Y (v) 1
2 ) —+ WS 2 [lvayem)®
uveE YG uvek(G)
Z Y (u) +vgv).
quE G)
Therefore, 2DISI(G) < PMD, 1, < $DM;(G). O

2

5. Chemical Applicabilities for Benzenoid structures

In 1865, German chemist August Kekule visualized the ring structure called Benzene (CgHg). Most
chemical organic compounds contain a loop of six carbon atoms called Benzene rings. Benzene is a widely
used industrial chemical and is a major part of gasoline. Some other uses of Benzene include making plastics,
synthetic fibers, rubber lubricants, dyes, resins, detergents, drugs, and more. For more information, we refer

o [15], [24] and [27].

In our study, we considered the molecular graph of some basic Benzenoid structures as shown in Figure 1.
The dominating degree of each vertex v of Benzenoid structures such as Benzene, Naphthalene, Anthracene,
and Phenanthrene is shown in Table 2. The computed values of the (m,n)-minimal dominating graphical

SEROOS

G,:Benzene G;:Anthracene

Solee !

G,:Naphthalene G4:Phenanthrene

Figure 1: Molecular graph of some basic Benzenoid structures.

indices of the molecular graph of some basic Benzenoid structures as shown in Table 3. Further, the
particular values of (m,mn)-minimal dominating graphical indices of the molecular graph of some basic
Benzenoid structures as shown in Table 4.
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6™+ T [T 8™ [ 4 8™

+(56)™ + (40)mn

Molecular Vertex dominating degree
gaphs | ve[v1) | Yolva) | Yol | Yalva) | velvs) | velve) | velvr) | velvs) | valve) | Yeluo) | Yobu) | velvra) | velvis) | velvu)
Gy ) ) 2 2 2 2 - - - - - -
Gy § b b 8 b b T § 0 ) - -
03 12 12 0 1 12 ) 14 8 9 14 6 14 7 8
Gy 11 9 9 ) 11 10 i) 14 10 T § 12 i) 12
Table 2: Vertex dominating degree of molecular graphs.
The computed values of (m,n)-minimal dominating indices
Molecular
graphs SMD PMDyy DMDyp
Gy 62" 6 0
Gy PV GM™ 4 4[8™ 6™+ 206™ + 5™ 4 (48)™" +2 6P 42 (30)™" 4 (42)™ 4I8™ — 6™ +26™ — 5™

HE™ = 7T [T — gMR |5 g

G3

QN gmn o gntlgmn 4 3 [gm 4 j4mn

A2[12M 6™ 4 2[8™ + 12" 4 6™ + 11

L™ 4 12 4 [14™ 4 8™ 4 [8™ 4 9™

O™+ 1A 4 [14™ 4 TN 4 [T 8T

384™M 42 06™N 42 72N 4 92N 4 47mn
H66™™ 4 132™" 4 112™ 4 72™ 4-126™"

O™ 4 56

3 16™ — 14™™ 4 2|12™ — 6T 4 2™ — 12"

HIG™ — LI 411 — 12" 4 |14 — g7 43— g™

HY™ — L4 147 T [T -,

Gy

2[12™ 4 5™ 4 [L1™ L g™ 42 28 gmn
O™ 5™+ 5™ 11 4 (1™ 4 10™
H[L0™ 4+ 5™]™ 4 [5™ 4 14™]™ 4 [14™ 4 10™]"
HIO™ + 7" [T 48T+ 8™+ 127

H[12™ 1™ 4 [12™ 4 9™ 4 [8™ 4 10™]"

SO™ o 12MRE™ 42 5N 4 9T 4 R
H12™ 5 0L 45 42 T

+14mn 4 gmn] + 9mn[5mn + gmn]

212 — 5™ 11— g™ 4 [g™ — 5
H10™ — 5 5™ — 14™[" 4 [14™ — 0™
L L L T
HL0™ — 7R 4 [7™ MR 43T — 12

H12™ — 11 12— 9P 4 g™ — 10

Table 3: The computed values of (m,n)-minimal dominating indices of molecular graphs.

351 = SMDuuH(G)

== PMD,1)(G)
30+
25-

20

15+

Value of graphical indices

e
*

1.0

25 3.0

Figure 2: The comparative analysis of G;.
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SMD (1 n) PMD (1m,n) DMD (m n)

Molecular

graphs m/n 1 2 3 1 2 3 1 2 3
1 12 24 36 6 6 6

G1 2 12 24 36 6 6 6
3 12 24 36 6 6 6
1 143 1877 2486 < 10" 462 2010 %< 10" 9033 x 102 15 29 63

Go 2 953 8572 x 10' | 7962 x 10 | 2010 x 10* | 4171 x 10* | 2326 < 10! 201 5293 1553 x 10?
3 6509 4175 = 10% | 2842 x 10% | 9033 x 102 | 9515 x 107 | 1173 x 10'3 2049 5614 < 102 | 1700 x 10°
1 354 7578 1668 x 102 1590 1772 < 102 | 2229 x 10* 70 434 2908

Gs 2 4006 1036 < 103 | 2919 x 10° | 1772 x 102 | 3139 x 10° | 8091 x 100 1390 1734 x 102 | 2346 x 10*
3 4819 x 10! | 1622 x 10* | 6275 x 10% | 2229 x 10* | 8091 x 10'0 | 4794 x 10'7 | 2158 x 10! | 4298 x 10* | 9358 x 107
1 313 5889 1131 x 102 1312 1204 x 102 1220 x 104 59 317 2021

G4 2 3103 6098 < 102 | 1283 x 10° | 1204 x 10 | 1338 x 10% | 1885 x 10'° 1061 1018 x 102 | 1176 < 10
3 3252 x 10" | 7239 x 10* | 1827 x 10% | 1220 x 10* | 1885 x 10'0 | 3918 x 10'6 | 1511 x 10" | 2142 x 10* | 3766 x 107

Table 4: The particular values

of (m,n)-minimal dominating indices of molecular graphs.

-6 SMDy,,(G)
4x107 1
== PMD(,0(G)
- DMDy,,,(G)
g 3x107} ]
2
£
3
=
o
=
5 2x107 q
—
=]
@
El
=
-
1x107F 1
0 @ - X w - - w ? |
1.0 15 2.0 25 3.0
n
Figure 3: The comparative analysis of Gs.
8x10°
-~ SMD,,,,,(G)
% PMD(,0(G)
-a DMD,,(G)
6x10°
£
£
£
S
=
2 4x10°
]
3
; X
=
>
2x10°
0 . e /
*® ® - - - -
10 15 2.0 25 3.0

Figure 4: The comparative analysis of G3.
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35x10°
- SMDy,,,1(G)

3.0x10° % PMDiuy(G)

-~ DMD,,,(G)
2.5x10°

2.0x10°

1.5x10°

Value of graphical indices

1.0x10°

5.0x10%

0F = - - o o
1.0 15 2.0 25 3.0

Figure 5: The comparative analysis of Gg4.

6. Comparative Analysis:

Given the particular values of the (m,n)-minimal dominating graphical indices of the molecular graph
of some basic Benzenoid structures as shown in Table 4 for 1 < {m,n} < 3, we have the comparative
analysis among the SMD (1, 11)(Gi), PMD (1, 1)(Gi) and DMD (1, 1) (Gi) of molecular graph of some basic
Benzenoid structures Gi for 1 <1i < 4 as shown in Figure 2 to Figure 5 as follows:

(i) In Gy, the value of SMD (1, 1,)(G1) with m =n > 11is 12n; n > 1, the value of PMD (;;, )(G1) with
m =mn > 1 is stagnate at the value 6. But DMD (1, )(G1) doesnot exist.
(ii) In Gi, DMD(myn)(Gi) < SMD(mm)(Gi) < PMD(m’n)(Gi) for 1 = 2,3,4 and {m, TL} > 1.

7. Conclusion and Open Problems

In this paper, the classical concepts of domination-related parameters and graphical indices are combined
and initiated to study the generalized minimal dominating graphical indices, which lie on the claim that their
particular cases, for pertinently chosen values of two real numbers m and n. Here, we have the following
Open problems.

(i) Obtain the some bounds and characterization among the (m, n)-minimal dominating graphical indices
namely SMD n(G),
PMD 1 (G) and DMDy n(G).

(ii) Obtain some bounds and characterization of (m,n)-minimal dominating graphical indices in terms of
other graph theoretical parameters such as covering and independence number of a graph.

(iii) Find some results on (m,n)-minimal dominating graphical indices of certain families of derived graphs/
transformation graphs /product graphs.

(iv) Find the values of the (m,n)-minimal dominating graphical indices of certain classes of chemical
graphs and compare them with degree/distance/spectral-based graphical indices. Also, explore some
results towards the QSPR / QSAR / QSTR Model.
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